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Abstract

Techniques have previously been developed to
determine the scattering parameters for lines or
guides with a single geometric step discontinuity
(€11, [2l1, [7]). However, for a system with more
than one closely spaced discontinuity the field
interaction between the discontinuities must be
taken into account. A technique outlined below,
can in theory handle any number of closely spaced
discontinuities.

Introduction

Microwave networks often contain abrupt
changes in characteristic impedance of cylindrical
or rectangular coaxial lines. It has been shown
[1] that a lumped element can be used in a
equivalent circulf to model such discontinuities to
account for the energy in evanescent waves. The
question arises whether this effect can be
minimized by using several closely-spaced steps to
achieve the change in characteristic impedance.
The resulting reduction of the frequency dependence
of the reflection coefficient at the junction
between two lines of different characteristic
impedance would improve the performance of many
microwave networks.

The approach given here involves defining a
matrix relating the modes at one side of a single
discontinuity with the modes at the other side. An
additional matrix is used to relate the modes at
the output of a section of wuniform guide to the
modes at the input. These matrices can then be
manipulated to obtain‘a relationship Dbetween the
incident modes at one side of the region with
multiple discontinuities and the transmit modes at
the other side. This technique can be considered a
generalization of the trasmission matrix analysis
technique for single waves (see for example [6]) to
include many higher order modes.
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Theory
The development that follows will be based on
the following assumptions:
1) The guide is a perfect conductor.
2) The coordinate z is parallel to the direction
of propagation.
3) The discontinuities occur only in the
z=constant plane.
4) Only a finite number of modes are needed to
adequately specify the fields.
The transverse components of the fields can be
written in general as

Et = 2 En e, (1a)
n=0
Ht = Hn z x e (1b)
n=0
where
_ Y 2 e 4 .
En Ajen” + Ane n (2a)
_ Y. Z _ ar Y 2
Hy = Y (a e'n® = are”Tn?) (2p)
JWE
Yn—- JY— (2c)
n

At the discontinuity the following boundary
conditions must be satisfied:

_ Et,2 over Sa
Eo g = (3a)
’ 0 over S
c
Ht,1 = Ht,2 over Sa (3b)

S_ refers to the aperture ‘area and S_ refers to the
conductor area at the discontinuity.

Using these conditions, the orthogonal properties
of e , and (1), the modes at one side of the
discontinuity can be expressed as a linear
combination of the modes on the other side. In
matrix notation,

E. =TE (4a)

TH =H (4p)
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where the matrix elements are

T - <en,1’em,2>a
e,nm e
’ |l en,1 [|a+c
T i <en,2’em,1>a
. h,nm Y

II en,z lla

The inner product used is

J Tz da
S

and the norm is given by

[IT]]2 = <7, 7>
It will be convenient to define a matrix M
containing both the E-field and H-field modes such
that
E
M=
H
Then (4) can be written as
H1 =D H2
where
Te 4]
P 1
0 Th
From (2) the relationship between the modes in a

region of guide with constant cross section can be
found,

E(z1) = cosh[Yn(zz-z1)]E(z2)

+ Y;lsinh[Yn(zz-z1)]H(zz)

H(z1) Yncosh[Yn(zz—z1)]E(zz)
- Sth[Yn(zz—z1)]H(ZZ)
In matrix notation,

H(z1) = LH(zz)

where
c Yls
L =
YS C
. cosh[Yn(zz—z1)] if n=m
nm 0 if n=m
s sinh[Yn(zz—z1)] if n=m
nm 0 if n=m
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Yn if n=m
Ynm =
0 if n=#m
With these tools at our disposal the .relation
between the modes 1in the incident region and the

modes in the transmit region can easily be found.
For example, if the discontinuity region consists
of two discontinuities then we can write

where T = D1LD2
D1 is the discontinuity matrix for the first
discontinuity, L is the line matrix representing
the line between the discontinuities, and D, is the
discontinuity matrix for the second discont%nuity.
If the first discontinuity the incident wave
hits is taken to be at z=0, then from (2) the
incident field at the first discontinuity can be
written as

Ty Top

then we can write

ZYiA = [Yi('l'11 + YT )

tot2

+(T,, + Y. T..)] E

t 22 t

+ !t'r12)

21
[Ii('rH

and

n

2Y A"
i

-(T,, +Y.T

£ 22)] E

21 t

from which the reflection coefficient
transmission coefficient can be found.

and

Parallel plate discontinuities
As an example the parallel plate case with an
incident TEM wave is considered. For the parallel

plate,
Te,00 = @
Te,Om =0 m=1,2,404
T - 2sininme) n=1,2,...
e,no nxm

2nsin(nwa)(-1)0
n,m=1,2,...

T T T 2,327
€,nm ¢ [(nc~(m/a)<]
Th,00 =1
_ sin(nrna) _
Th,On = v n=1,2,...
Th,mO =0 m=1,2,...



~ 2nsin(ama) (-1 Determining the number of modes to use

Th,m = o [me—(m/a)2] n,m=1,2,... When using this approach care must be taken in
picking the number of modes sed in the
calculations. The higher order modes will decay

where very rapidly between discontinuities. Modes of
h2 high enough order will be (numerically speaking)

o4 = — limited ¢to the region around a discontinuity. To

1 ask the computer to handle the coupling of these

h, = height of plate on left side of higher order modes can be quite a computational

discontinuity burden. It will be necessary to experiment with a
different number of modes and observe the behavior

h, = height of plate on right side of of the scattering parameters and to observe the

discontinuity condition of the matrices used in the calculations.
Of course, if the spacings are far enough apart

A computer program was written to find the then each discontinuity can be treated in
reflection coefficient and transmission coefficient isolation.

for an arbritrarily shaped discontinuity region
using the equations given above. The general

orientation for the discontinuity région is shown Conclusion

in  Figure 11 To validate ¢this approach a A technique has been outlined that accounts
oompaﬁlson has ?een @adg between one cgse of for the field interaction among closely spaced
treating each discontinuity separately using the discontinuities along a guide. Examples were given
equivalent capacitance technique and another case to show how this technique can be used to

using the matrix technique outlined above. It approximate tapered sections and for computer

would be expected that as the SPaCiQE between optimization for a certain bandwidth about a given
discontinuities increases, the two solutions should center frequency

converge, since the evanescent waves created at one
discontinuity will rapidly decay before reaching
the next discontinuity. As shown in Figure 2 this
is indeed the case.

An example showing an application of the above
technique is shown in Figure 3; a frequency
response of a tapered section with the height
approximating a sinusoidal variation is given. In
this  example six modes were used in the
calculations. As a further example a numerical
optimization routine was used to find an optimal
arrangement for an impedance match over a given
bandwidth using a system with three discontinuities
with the total discontinuity region being about a
quarter wavelength long. Five modes were wused 1In
this example. This is shown in Figure 4.
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Figure 1. Cross section of parallel plate discontinuity region
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Figure 2. Comparision between matrix technique and
" capacitance technique in determining
reflection coefficient as a function of
mid-section length.
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Figure 3. Example of technique applied to a taper

© section approximating a sinusoidal

variation. A, is the critical wavelength
for which only one mode of propagation

can occur if A < AO
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Figure 4. Example using an optimization routine to
minimize the magnitude of the reflec.
over a given bandwidth (.235< hinc/A
<.265)
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