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Abstract

Techniques have previously been developed to

determine the scattering parameters for lines or

guides witn a single geometric step discontinuity

([11, [21, [71). However, for a system with more

than one closely spaced discontinuity the field

interaction between the discontinuities must be

taken into account. A technique outlined below,

can in theory handle any number of closely spaced
discontinuities.

Introduction

Microwave networks often contain abrupt

changes in characteristic impedance of cylindrical

or rectangular coaxial lines. It has been shown

[11 that a lumped element can be used in a
equivalent circuit to model such discontinuities to

account for the energy in evanescent waves. The

question arises whether this effect can be

minimized by using several closely–spaced steps to

achieve the change in characteristic impedance.

The resulting reduction of the frequency dependence

of the reflection coefficient at the junction

between two lines of different characteristic

impedance would improve the performance of many

microwave networks.

The approach given here involves defining a

matrix relating the modes at one side of a single

discontinuity with the modes at the other side. An

additional matrix is used to relate the modes at

the output of a section of uniform guide to the

modes at the input. These matrices can then be

manipulated to obtain’a relationship between the

incident modes at one side of the region with

multiple discontinuities and the transmit modes at

the other side. This technique can be considered a

generalization’of the transmission matrix analysis

technique for single waves (see for example C61) @
include many higher order modes.

Theory

The development that follows will ‘be based on

the following assumptions:

1) The guide is a perfect conductor.

2) The-coordinate-z is parallel to

of propagation.

3) The discontinuities occur
z=constant plane.

4) Only a finite number of modes

adequately specify the fields.

The transverse components of the

written in general as

.

where

En = Aneynz + A;e-ynZ

Hn = Yn(Aneynz - A~e-ynz)

Yn = -j%

n

the direction

only in the

are needed to

fields can be

(la)

(lb)

(2a)

(2b)

(2C)

At the discontinuity the following boundary

conditions must be satisfied:

(Et ~ over S
Et,=’

a

, 0 over S
c

(Sa)

Et ~ = 17t z over Sa (3b)
,

Sa refers to the aperture ‘area and Sc refers to the

conductor area at the discontinuity.

Usi~g these conditions, the orthogonal properties

ofe , and (l), the modes at one side of the

disc~ntinuitv can be eXDreSSed as a linear

combination of the

matrix notation,

El = TeE2

‘hHl = ‘2

modes on ~he other side. In

(4a)

(4b)
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where the matrix elements are. —
<e

T
n,l’e m,2>a

e,nm= II ~n,l IIS+c

<z ,;
T

n,2 m,l>a

hjnm= II ‘$,2 II:

The inner product used is

and the norm is given by

117112=<F,??>

It will

containing

that

M

be convenient to define a matrix F!

both the E-field and H-field modes such

=[1E

l-JH

Then (4) can be written as

M1=DM2

where

[1Te O
D=

(J Til

From (2) the relationship between the modes in a

region of guide

found,

E(zl) =

H(zl) =

with constant cross section can be

cosh[Yn(z2-zl )]E(Z2)

+ Y~1sinh[Yn(z2-z1 )]H(z2)

Yncosh[Yn(z2-zl )]E(z2)

– sinh[Yn(z2-z1 )]H(z2)

In matrix notation,

M(zl) = LH(Z2)

where

[1

c Y-Is
L=

Ys c

(cosh[Yn(z2-zl )] if n=m
c=

nm
o if n*m

(

sinh[Yn(z2-zl )] if n=m
s=

nm
o if n+m

(
Yn if n=m

Y=
nm

o if n*m

With these tools at our disposal the relation

between the modes in the incident region and the

modes in the transmit region can easily be found.

For example, if the discontinuity region consistS

of two discontinuities then we can write

Mi = mft

‘here T = ‘1LD2

‘1
is the discontinuity matrix for the first

discontinuity, L is the line matrix representing

the line between the discontinuities, and D is the
?“discontinuity matrix for the second discont nulty.

If the first discontinuity the incident wave

hits is taken to be at z=O, then from (2) the

incident field at the first discontinuity can be
written as

Et = At + A?
t

In addition, if T is partitioned such that

T=

[1
‘11‘12
T21 ’22

then we can write

2YiA = [Yi(Tll + YtT12)

+ (T

and
21 + ‘tT22)’ %

2YiA* = [Yi(T1l + YtT12)

- (T21 + YtT22)] Et

from which the reflection coefficient and

transmission coefficient can be found.

Parallel plate discontinuities

As an example the parallel plate case with an

incident TEM wave is considered. For the parallel

plate,

T
e,00 =

T
e,Om =

T
e,nO =

T
e,nm =

‘h,00 =

‘h,On =

T
h,mO =

a

o m=l ,2,...

2sin(nmci)

nxr
2nsin(nma)(-l)m

II [n2-(m/a)2]

1

o

n=l ,2 ,...

n,m=l ,2,...

n=l ,2,...

m=l ,2,...
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2nsin(nma)(-l)m

‘h,mn = am [n2-(m/a)21

where

‘2~=—

‘1

A computer program

n,m=l ,2,...

of plate on left side of

of plate on right side of

was written to find the

reflection coefficient and transmission coefficient

for an arbitrarily shaped discontinuity regiOn

using the equations given above. The general

orientation for the discontinuity region is shown

in Figure 1. To validate this approach a

comparison has been made between one case of

treating each discontinuity separately using the

equivalent capacitance technique and another case

using the matrix technique outlined above. It

would be expected that as the spacing between

discontinuities increases, the two solutions should

converge, since the evanescent waves created at one

discontinuity will rapidly decay before reaching

the next discontinuity. As shown in Figure 2 this

is indeed the case.
An example showing an application of the above

technique is shown in Figure 3; a frequency

response of a tapered section with the height

approximating a sinusoidal variation is given. In

this example six modes were used in the

calculations. As a further example a numerical

optimization ’routine was used to find an optimal

arrangement for an impedance match over a given

bandwidth using a system with three discontinuities

with the total discontinuity region being about a

quarter wavelength long. Five modes were used in

this example. This is shown in Figure 4.

Determining the number of modes to use

When using this approach care must be taken in

picking the number of modes used in the

calculations. The higher order modes will decay

very rapidly between discontinuities. Modes of
high enough order will be (numerically speaking)

limited to the region around a discontinuity. To
ask the computer to handle the coupling of these
higher order modes can be quite a cclmputational
burden. It will be necessary to experiment with a

different number of modes and observe the behavior

of the scattering parameters and to c,bserve the
condition of the matrices used in the C~llCUlatiOns.

Of course, if the spacings are far enough apart
then each discontinuity can be treated in
isolation.

Conclusion

A technique has been outlined that account~ .-
for the fieid interaction among clcwely spaced
discontinuities along a guide. Examples were given

to show how this technique can be used bo

approximate tapered sections and for computer
optimization for a certain bandwidth about a given

center frequency
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Figure 1. Cross section of parallel plate discontinuity region
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LENGTH OF TAPER SECTION ( D/A)

Comparison between matrix technique and

capacitance technique in determining

reflection coefficient as a function of
mid-section length.
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Figure 3. Example of technique applied to a taper

section approximating a sinusoidal

variation. AO is the critical wavelength

for which only one mode of propagation

can occur if A < Ao
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Figure 4. Example using an optimization routine to

minimize the magnitude of the reflec.

over a given bandwidth (.235< h /i

<.265)
inc

References

[1] J. R. Whinnery and H. W. Jamieson,

‘tEquivalent circuits for cliscontinuities in

transmission lines,~! Proc. IRE, vol. 32, P.98,
February 1944.

[2] J. R. Whinnery, H. W. Jamieson, and T. E.

Robbins, “Coaxial line discontinuities,!! Proc.

IRE, VO1. 32, p.695, November 1944.

[31 F. A. Hinchey and Sheila Prasad, I!Analysis of

a double discontinuity in a COaXial line,!! Radio
Science, vol. 1, No. 3, P.397, March 1965.

[41 S. B. Cohn, “optimum design of stepped

transmission-line transformers,ff IRE Trans. on
Microwave Theory and Techniques, vol. MTT-3, ‘p.16,

April 1!355.

[5] P. I. Somlo, I!The computation of coaxial line

step capacitances,!! IEEE Trans. on Microwave
Theory and Techniques, vol. MTT-15, No.1, p.48,

January 196’7.

[61 R. E. Collin, “Foundations for microwave
engineering,!! p. 180, (McGraw-Hill Book Co., Inc.)

[71 R. %faVi Naini and R. H. MacPhie, 11on

solving waveguide scattering problems by the
conservation of complex power technique,” IEEE
Trans. On Microwave Theory and Techniques, vol.
MTT-29, pp. 337-343, Allril 1981.

[8] P. E. Moller and R. H. MacPhie, “On the

Graphical Representation of Electric Field Lines in

Waveguide,~l IEEE Trans. on Microwave Theory and

Techniques, vol. ?4TT-33; pp. 187-192, March 1985.

502


